Supplementary Material for ‘Reduction Techniques for Graph-based Convex Clustering’

Proofs

The Lagrangian Dual of TCC

Consider problem (5). Let \(Y = \bar{X} - \bar{D}B \), and the Lagrangian function is

\[
L(Y, B; \lambda \Theta) = \frac{1}{2} \| Y \|_F^2 + \lambda \| WB \|_{1,q} + \langle \lambda \Theta, \bar{X} - \bar{D}B - Y \rangle
\]

where \(\lambda \Theta \in \mathbb{R}^{n \times p} \) is the Lagrangian multiplier. To find the dual, we need to solve the following problems:

\[
\min_Y f_1(Y) = \frac{1}{2} \| Y \|_F^2 - \langle \lambda \Theta, Y \rangle,
\]

\[
\min_B f_2(B) = -\langle \lambda \Theta, DB \rangle + \lambda \| WB \|_{1,q}.
\]

By setting \(\frac{\partial f_1(Y)}{\partial Y} = 0 \), we obtain

\[
Y^* = \lambda \Theta.
\]

Therefore,

\[
\min_Y f_1(Y) = f_1(Y^*) = -\frac{\lambda^2}{2} \| \Theta - \frac{X}{\lambda} \|_F^2 + \| X \|_F^2.
\]

Consider \(f_2(B) \). Let \(\beta_r \) be the \(r \)th row of \(B \). The optimality condition is

\[
0 \in \partial f_2(\beta_r) = -\lambda [\bar{D}^T \Theta]_r + \lambda w_r \partial \| \beta_r \|_q,
\]

where \(r \leftrightarrow (i, j) \), i.e. the \(r \)th row of \(B \) corresponds to the data pair \((i, j)\), and \(\bar{d}_r \) is the \(r \)th row of \(\bar{D}^T \). The above subgradient leads to

\[
\bar{d}_r \Theta = w_r v_r, \quad v_r \in \partial \| \beta_r \|_q.
\]

By noting that

\[
\langle v_r, \beta_r \rangle = \| \beta_r \|_q,
\]

we have

\[
\langle \bar{d}_r \Theta, \beta_r \rangle = w_r \| \beta_r \|_q.
\]

Thus we can see that

\[
0 = \min_{\beta_r} f_2(\beta_r).
\]

Eq. (21) implies that

\[
\bar{d}_r \Theta \in w_r B_q,
\]

where \(\bar{q} = \frac{q}{q - 1} \) and \(B_q \) is the unit \(\ell_q \) ball in \(\mathbb{R}^p \). Combining all the derivations above, the dual of problem (5) is

\[
\min_{\Theta} \left\{ g(\Theta) = \frac{\lambda^2}{2} \| \Theta - \frac{X}{\lambda} \|_F^2 - \| X \|_F^2 : \| \bar{d}_r \Theta \|_q \leq w_r, \ i = 1, \cdots, n - 1 \right\}.
\]

The Lagrangian Dual of CGCC

Let \(Z = CA \in \mathbb{R}^{m \times p} \), then the Lagrangian is

\[
L(Z, A; \lambda \Phi) = \frac{1}{2} \| A - X \|_F^2 + \lambda \| \tilde{W}Z \|_{1,q} + \langle \lambda \Phi, \tilde{C}A - Z \rangle
\]

\[
= \frac{1}{2} \| A - X \|_F^2 + \langle \lambda \Phi, \tilde{C}A \rangle - \langle \lambda \Phi, Z \rangle + \lambda \| \tilde{W}Z \|_{1,q}.
\]

where \(\lambda \Phi \in \mathbb{R}^{m \times p} \) is the Lagrangian multiplier. We solve the following subproblems:

\[
\min_A f_1(A) = \frac{1}{2} \| A - X \|_F^2 + \langle \lambda \Phi, \tilde{C}A \rangle,
\]

\[
\min_Z f_2(Z) = -\langle \lambda \Phi, Z \rangle + \lambda \| \tilde{W}Z \|_{1,q}.
\]

By setting \(\frac{\partial f_1(A)}{\partial A} = 0 \), we obtain

\[
A^* = X - \tilde{C}^T \Phi.
\]

Therefore,

\[
\min_A f_1(A) = \frac{\lambda^2}{2} \| \tilde{C}^T \Phi \|_F^2 + \langle \lambda \Phi, \tilde{C}(X - \tilde{C}^T \Phi) \rangle = \lambda \Phi, \tilde{C}X - \frac{\lambda^2}{2} \| \tilde{C}^T \Phi \|_F^2.
\]

Consider \(f_2(Z) \). Note that \(f_2(Z) \) can be decomposed into \(m \) subproblems corresponding to the rows of \(Z \):

\[
\min_{z_r} f_2(z_r) = -\langle \lambda \phi_r, z_r \rangle + \lambda \bar{w}_r \| z_r \|_q, \ r = 1, \cdots, m.
\]

Now, the optimality condition is

\[
0 \in \partial f_2(z_r) = -\lambda \phi_r + \lambda \bar{w}_r \| z_r \|_q,
\]

which leads to

\[
\phi_r = v_r, \quad v_r \in \bar{w}_r \partial \| z_r \|_q.
\]

By noting that

\[
\langle v_r, z_r \rangle = \bar{w}_r \| z_r \|_q,
\]

we have

\[
\langle \phi_r, z_r \rangle = \bar{w}_r \| z_r \|_q.
\]

Thus we can see that

\[
0 = \min_{z_r} f_2(z_r).
\]

Moreover, Eq. (23) implies that

\[
\phi_r \in \bar{w}_r B_q.
\]

Combining all the derivations above, the dual problem of the CGCC problem in (1) is

\[
\min_{\Phi} \left\{ g(\Phi) = \frac{\lambda^2}{2} \| \tilde{C}^T \Phi - \frac{X}{\lambda} \|_F^2 - \| X \|_F^2 : \| \phi_r \|_q \leq 1, \ r = 1, \cdots, m \right\}.
\]

Proof of Lemma 1

We prove the statement by contradiction. Since each row of \(C \) denotes one edge in \(E_T \), for the \(r \)th row \(c_r \), according to the edge \((i, j)\) in \(E_T \), we represent \(r \leftrightarrow (i, j) \). Assume that \(C \) is rank-deficient, then there exist at least one row \(c_{rh} \) such that \(c_{rh} \) can be linearly represented by the residual \(n - 2 \) rows, i.e., \(c_{rh} = \sum_{k \neq k'} a_{rk} c_{rk'} \), where \(a_{rk}'s \) are scalars. Then we must have \(i_k \in \{i_{k'}\}_{k' \neq k} \cup \{j_{k'}\}_{k' \neq k} \) and \(j_k \in \{i_{k'}\}_{k' \neq k} \cup \{j_{k'}\}_{k' \neq k} \), where \(r_k \leftrightarrow (i_k, j_k) \), because there are only two non-zero elements at the \(i \)th and \(j \)th position for one row \(c_r \). In other words, node \(i_k \) and node \(j_k \) are connected via another path instead of \((i_k, j_k)\), therefore, there exists a ring in \(T \), which contradicts the fact that \(T \) is a tree. □
Proof of Lemma 2
From the definition of C, it is easy to verify that 1_n is orthogonal to all the rows in C, therefore \(\text{rank}(D) = n \) and D is invertible. \(\square \)

Proof of Theorem 1
As mentioned previously, (i)\iff(ii) is obvious. Then we show (ii)\iff(iii). We first prove (ii)\implies(iii). Assume (ii) is satisfied, then from the KKT condition in Eq. (7), we have $DB^* = 0$. Assume $B^* \neq 0$, it must be that the value of the objective function in problem (5) satisfies $h(0) > h(B^*)$, i.e. $\frac{1}{2} \|\tilde{X}\|_F^2 > \frac{1}{2} \|\tilde{X}\|_F^2 + \lambda \|W B^*\|_{1,q}$, which is impossible. Therefore, we have $B^* = 0$. The converse (iii)\implies(ii) can be easily verified. \(\square \)

Useful Lemmas

Lemma 4. (Ruszczyński 2006; Bauschke and Combettes 2011) For a closed convex set $S \in \mathbb{R}^{n \times p}$ and a point $u \in S$, the normal cone to S at u is defined by
\[
\mathcal{N}_S(u) = \{ v : \langle v, u' - u \rangle \leq 0, \forall u' \in S \}. \tag{24}\]
Denote by
\[
\mathcal{P}_S(u) = \arg \min_{u' \in S} \| u - u' \|_F.
\]
Then, the following statements hold: (i) $\mathcal{N}_S(u) = \{ v : \mathcal{P}_S(u + v) = u \}$; (ii) $\mathcal{P}_S(u + v) = u$, $\forall v \in \mathcal{N}_S(u)$; (iii) For $\pi \notin S$, $u = \mathcal{P}_S(\pi) \iff \pi - u \in \mathcal{N}_S(u)$.

Lemma 5. (Nesterov 2004) For any convex constrained optimization problem:
\[
\min_{X \in S} f(X), \tag{25}
\]
where S is closed and set and $f(\cdot)$ is convex and differentiable. $X^* \in S$ is an optimal solution to Eq. (25) if and only if
\[
f'(X^*) \in \mathcal{N}_S(X^*). \tag{26}
\]

Lemma 6. Let $n(\lambda')$ be defined in Theorem 2 for any $\lambda' < \lambda_{\text{max}}$ and $q \in \{1, 2, \infty\}$, we have $n(\lambda') \in \mathcal{N}_F(\Theta^*(\lambda'))$.

Proof: We prove the case when $q = \tilde{q} = 2$, and other cases can be proved in a similar way. We first discuss the condition that $\lambda' < \lambda_{\text{max}}$. When $\lambda' < \lambda_{\text{max}}$, from Theorem 1 we know $\frac{X}{\lambda'} \notin \mathcal{F}$. Therefore,
\[
\frac{\tilde{X}}{\lambda'} - \mathcal{P}_F \left(\frac{\tilde{X}}{\lambda'} \right) = \frac{\tilde{X}}{\lambda'} - \Theta^*(\lambda') \neq 0.
\]
From condition (iii) in Lemma 4, we have
\[
\frac{\tilde{X}}{\lambda'} - \Theta^*(\lambda') \in \mathcal{N}_F(\Theta^*(\lambda')).
\]
Next, we consider $\lambda' = \lambda_{\text{max}}$. From Theorem 1, we have $\Theta^*(\lambda') = \frac{\tilde{X}}{\lambda'} \in \mathcal{F}$. Now we have to show
\[
\langle d^*_\lambda \frac{\tilde{X}}{\lambda_{\text{max}}}, \Theta - \frac{\tilde{X}}{\lambda_{\text{max}}} \rangle \leq 0, \forall \Theta \in \mathcal{F},
\]
which is equivalent to
\[
\langle d^*_\lambda \frac{\tilde{X}}{\lambda_{\text{max}}}, \Theta - \frac{\tilde{X}}{\lambda_{\text{max}}} \rangle \leq 0, \forall \Theta \in \mathcal{F}.
\]
From the definition of d_λ, we have
\[
\left\| d^*_\lambda \frac{\tilde{X}}{\lambda_{\text{max}}} \right\|_2 = w_* = \max \{ w_r \}_{r=1}^{n-1}.
\]
Recall the definition of \mathcal{F}, where
\[
\mathcal{F}_r = \left\{ \Theta : \left\| d^*_\lambda \Theta \right\|_q \leq w_r \right\}, \ r = 1, \cdots, n - 1.
\]
Then we have
\[
\langle d^*_\lambda \frac{\tilde{X}}{\lambda_{\text{max}}}, \Theta - \frac{\tilde{X}}{\lambda_{\text{max}}} \rangle \leq \left\| d^*_\lambda \frac{\tilde{X}}{\lambda_{\text{max}}} \right\|_2 \left\| d^*_\lambda \Theta \right\|_2 - w_*^2 \leq 0,
\]
which completes the proof. \(\square \)

Proof of Theorem 2
We prove the case when $q = \tilde{q} = 2$, and other cases can be proved in a similar way. The statement in Eq. (9) is equivalent to
\[
\left\| \Theta^*(\lambda) - \Theta^*(\lambda') \right\|_F^2 \leq \left\langle \Theta^*(\lambda) - \Theta^*(\lambda'), v^+(\lambda, \lambda') \right\rangle. \tag{27}
\]
We will show Eq. (27) holds. From Lemma 4 and Lemma 6, we have
\[
\langle n(\lambda'), \Theta - \Theta^*(\lambda') \rangle \leq 0, \forall \Theta \in \mathcal{F}. \tag{28}
\]
By letting $\Theta = \Theta^*(\lambda)$ and $\Theta = 0$, we can obtain the following results respectively:
\[
\langle n(\lambda'), \Theta^*(\lambda) - \Theta^*(\lambda') \rangle \leq 0, \tag{29}
\]
\[
\left\{ \begin{array}{l}
\langle n(\lambda'), \tilde{X} \rangle \geq 0, \quad \text{if } \lambda' = \lambda_{\text{max}}, \\
\left\| \tilde{X} \right\|_F \geq \left\| \Theta^*(\lambda') \right\|_F, \quad \text{if } \lambda' < \lambda_{\text{max}}.
\end{array} \right. \tag{30}
\]
Moreover, from Lemma 6, we also have
\[
\frac{\tilde{X}}{\lambda} - \Theta^*(\lambda') \in \mathcal{N}_F(\Theta^*(\lambda')).
\]
Then, we have
\[
\left\langle \tilde{X} - \Theta^*(\lambda') - \Theta^*(\lambda) \right\rangle \leq 0. \tag{31}
\]
Eq. (31) is equivalent to
\[
\left\| \Theta^*(\lambda) - \Theta^*(\lambda') \right\|_F^2 \leq \left\langle \Theta^*(\lambda) - \Theta^*(\lambda'), v(\lambda, \lambda') \right\rangle. \tag{32}
\]
Comparing Eq. (32) with Eq. (27), we consider Eq. (27) again:
\[
\left\langle \Theta^*(\lambda) - \Theta^*(\lambda'), v^+(\lambda, \lambda') \right\rangle = \left\langle \Theta^*(\lambda) - \Theta^*(\lambda'), v(\lambda, \lambda') \right\rangle - \left\langle \Theta^*(\lambda) - \Theta^*(\lambda'), v(\lambda, \lambda') - v^+(\lambda, \lambda') \right\rangle \tag{33}
\]
\[
= \left\langle \Theta^*(\lambda) - \Theta^*(\lambda'), v(\lambda, \lambda') \right\rangle - \left\langle \Theta^*(\lambda) - \Theta^*(\lambda'), \langle v(\lambda, \lambda'), n(\lambda') \rangle \right\rangle.
\]
Based on Eq. (33), recall Eq. (29) and we know that if \(\langle v(\lambda, \lambda'), n(\lambda') \rangle \geq 0 \), we can prove the theorem. Actually, we have
\[
\langle v(\lambda, \lambda'), n(\lambda') \rangle = \left(\frac{1}{\lambda} - \frac{1}{\lambda'} \right) \langle \tilde{X}, n(\lambda') \rangle + \left(\frac{1}{\lambda} - \Theta^*(\lambda') \right) n(\lambda')
\]

If \(\lambda' = \lambda_{\text{max}} \), recall the first statement in Eq. (30) and \(\lambda < \lambda' \), it is easy to see that
\[
\left(\frac{1}{\lambda} - \frac{1}{\lambda'} \right) \langle \tilde{X}, n(\lambda') \rangle \geq 0.
\]

If \(\lambda' < \lambda_{\text{max}} \), from the second statement in Eq. (30), we also have
\[
\langle \tilde{X}, n(\lambda') \rangle = \left\{ \begin{array}{ll}
0, & \text{if } \lambda' = \lambda_{\text{max}}, \\
\|n(\lambda')\|_F^2, & \text{if } \lambda' < \lambda_{\text{max}}.
\end{array} \right.
\]

Now the last thing is to show that
\[
\langle \tilde{X}, n(\lambda') \rangle \geq 0. \tag{34}
\]

Eq. (34) is obvious, since
\[
\left\langle \tilde{X}, n(\lambda') \right\rangle = \left\{ \begin{array}{ll}
0, & \text{if } \lambda' = \lambda_{\text{max}}, \\
\|n(\lambda')\|_F^2, & \text{if } \lambda' < \lambda_{\text{max}}.
\end{array} \right.
\]

Finally, we reach the conclusion.

Proof of Theorem 3

From the feasible region \(\mathcal{O} \) in Eq. (10), for any \(\Theta \in \mathcal{O} \) we can write
\[
\Theta = o(\lambda, \lambda') + \Upsilon, \| \Upsilon \|_F \leq R(\lambda, \lambda').
\]

Therefore, if \(q = 1 \), i.e. \(q = \infty \), we have
\[
\sup_{\Theta \in \mathcal{O}} \left\| \tilde{d}, \Theta \right\|_1 = \sup_{\| \Upsilon \|_F \leq R(\lambda, \lambda')} \left\| \tilde{d}, o(\lambda, \lambda') + \tilde{d}, \Upsilon \right\|_1 = \| \tilde{d}, o(\lambda, \lambda') \|_1 + \| \tilde{d}, \Upsilon \|_2.
\]

else if \(q = 2 \), we have
\[
\sup_{\Theta \in \mathcal{O}} \left\| \tilde{d}, \Theta \right\|_2 = \sup_{\| \Upsilon \|_F \leq R(\lambda, \lambda')} \left\| \tilde{d}, o(\lambda, \lambda') + \tilde{d}, \Upsilon \right\|_2 = \| \tilde{d}, o(\lambda, \lambda') \|_2 + \| \tilde{d}, \Upsilon \|_2.
\]

else if \(q = \infty \), we have
\[
\sup_{\Theta \in \mathcal{O}} \left\| \tilde{d}, \Theta^* \right\|_\infty = \sup_{\| \Upsilon \|_F \leq R(\lambda, \lambda')} \left\| \tilde{d}, o(\lambda, \lambda') + \tilde{d}, \Upsilon \right\|_\infty = \| \tilde{d}, o(\lambda, \lambda') \|_\infty + \| \tilde{d}, \Upsilon \|_2.
\]

where the supreme values can be obtained directly by Cauchy inequality and norm inequalities. From these supreme values, we can directly reach the conclusion. \(\square \)

Proof of Lemma 3

Because the graph \(G \) in CGCC model is a cyclic graph, there exists at least one ring in \(E_C \). Recall that we require \(G \) to be connected graph. Therefore, if there exist rings in \(E_C \), we must have that the cardinality \(|E_C| = m \geq n > n - 1 \).

Moreover, from the proof of Lemma 1, we know that if a ring exists in \(E_C \), there must exist one row of \(\bar{C} \) that can be linearly represented by some other rows. For any \(m \geq n \), there exists at least one ring in \(E_C \), therefore, \(\bar{C} < n \) is rank-deficient. \(\square \)

Proof of Theorem 4

The proofs can be completed by following those of Theorem 1. \(\square \)

Proof of Theorem 5

We prove the case when \(q = \hat{q} = 2 \), and other cases can be proved in a similar way. When \(\lambda' < \lambda_{\text{max}} \), Eq. (19) is equivalent to
\[
\| \Lambda \hat{F}^*(\lambda) - \Lambda \tilde{F}^*(\lambda') \|_F^2 \leq \langle \Lambda \hat{F}^*(\lambda) - \Lambda \tilde{F}^*(\lambda'), \nabla^+(\lambda, \lambda') \rangle.
\]

(35)

We will show Eq. (35) holds. Note that when \(\lambda' < \lambda_{\text{max}} \), \(\Lambda \tilde{F}(\lambda' = -\tilde{h}(\Phi^*) \). From Lemma 5, we have
\[
\langle \tilde{h}(\Phi^*) - \Lambda \tilde{F}^*(\lambda'), \nabla^+(\lambda, \lambda') \rangle \leq 0, \forall \tilde{h} \in \mathcal{H}.
\]

By letting \(\tilde{f} = \tilde{F}^*(\lambda) \) and \(\tilde{h} = 0 \), we can obtain the following results respectively:
\[
\langle \tilde{h}(\Phi^*) - \Lambda \tilde{F}^*(\lambda'), \nabla^+(\lambda, \lambda') \rangle \leq 0, \tag{37}
\]
\[
\| \Lambda^{-1} \tilde{h} \|_F \leq \| \Lambda \tilde{F}^*(\lambda') \|_F, \tag{38}
\]

Moreover, from Lemma 5, we also have
\[
-\tilde{h}(\Phi^*) = \frac{\sqrt{\lambda}}{\lambda} \frac{\| \tilde{F}^*(\lambda') \|_F}{\| \nabla^+(\lambda, \lambda') \|_F}.
\]

Then, we have
\[
\langle \tilde{h}(\Phi^*) - \Lambda \tilde{F}^*(\lambda'), \nabla^+(\lambda, \lambda') \rangle \leq 0. \tag{39}
\]

Eq. (39) is equivalent to
\[
\| \Lambda \tilde{F}^*(\lambda) - \Lambda \tilde{F}^*(\lambda') \|_F^2 \leq \langle \Lambda \tilde{F}^*(\lambda) - \Lambda \tilde{F}^*(\lambda'), \nabla^+(\lambda, \lambda') \rangle. \tag{40}
\]

Comparing Eq. (40) with Eq. (35), we consider Eq. (35) again:
\[
\langle \Lambda \tilde{F}^*(\lambda) - \Lambda \tilde{F}^*(\lambda'), \nabla^+(\lambda, \lambda') \rangle = \langle \Lambda \tilde{F}^*(\lambda) - \Lambda \tilde{F}^*(\lambda'), \nabla^+(\lambda, \lambda') \rangle.
\]

(41)
Based on Eq. (41), recall Eq. (37) and we know that if \(\langle \nabla \lambda, \nabla \lambda^* \rangle \geq 0 \), we can prove the theorem. Actually, we have
\[
\langle \nabla \lambda, \nabla \lambda^* \rangle = \left\langle \frac{\Lambda^{-1} \nabla \lambda}{\lambda} - \Lambda \Phi^*(\lambda^*), \nabla \lambda^* \right\rangle
\]
\[
= \left(\frac{1}{\lambda} - \frac{1}{\lambda^*} \right) \langle \Lambda^{-1} \nabla \lambda, \nabla \lambda^* \rangle + \left\langle \frac{\Lambda^{-1} \nabla \lambda}{\lambda} - \Lambda \Phi^*(\lambda^*), \nabla \lambda^* \right\rangle.
\]
From Eq. (38), we have
\[
\langle \Lambda^{-1} \nabla \lambda, \nabla \lambda^* \rangle \geq \|\Lambda^{-1} \nabla \lambda\|_{\lambda}^{2} - \|\Lambda^{-1} \nabla \lambda\|_{\lambda} \|\Lambda \Phi^*(\lambda^*)\|_{\lambda}^{2} \geq 0.
\]
Now the last thing is to show that
\[
\left\langle \frac{\Lambda^{-1} \nabla \lambda}{\lambda} - \Lambda \Phi^*(\lambda^*), \nabla \lambda^* \right\rangle \geq 0.
\]
Eq. (42) is obvious, since
\[
\left\langle \frac{\Lambda^{-1} \nabla \lambda}{\lambda} - \Lambda \Phi^*(\lambda^*), \nabla \lambda^* \right\rangle = \|\nabla \lambda^*\|_{\lambda}^{2} \geq 0.
\]
Now we complete the proof. \(\square \)

Details for Definition 1

Let \(\mathcal{O} \) be the feasible region constructed from Eqs. (19):
\[
\mathcal{O}(\lambda, \lambda^*) = \{ \Phi(\lambda) : \|\Lambda \Phi(\lambda) - \nabla (\lambda, \lambda^*)\|_{\lambda} \leq \nabla(\lambda, \lambda^*) \}.
\]
We have to estimate the following supreme values:
\[
\sup_{\Phi} \{ \|\nabla \Phi_s\|_{\lambda} : \Phi \in \mathcal{O}, \; r = 1, \cdots, m \}.
\]
Let \(\Xi = \Lambda \Phi^* \). The problem becomes
\[
\sup_{\Xi} \{ \|\zeta_r\|_{\lambda} : \Lambda^{-1} \Xi \in \mathcal{O}, \; r = 1, \cdots, m \},
\]
where \(\zeta_r \) is the \(r \)th row of \(\Lambda^{-1} \). The supreme values in Eq. (45) can be obtained exactly from the proof of Theorem 3. \(\square \)

Analysis for \(\delta \)

The parameter \(\delta \) in problem (18) plays an important role, since \(\lambda_{\max} \) depends on the value of \(\delta \). When \(\delta \) is very small, computing \(\lambda_{\max} \) may be numerically unstable but when \(\delta \) is large, the relaxed dual form will have a large deviation from the original one, leading to an inaccurate estimation for \(\lambda_{\max} \). However, since the CGCC problem is convex problem, there exist a certain value of \(\lambda_{\max}^* \) that will guarantee all the data points are clustered. Therefore, In the implementation of the Cigar rules, we propose to empirically find the maximum value \(\lambda_{\max}^* \) first, and then choose an appropriate \(\delta \) such that the induced \(\lambda_{\max}^* \) satisfies that \(\lambda_{\max}^* \) is close to \(\lambda_{\max}^* \) but \(\lambda_{\max}^* < \lambda_{\max} \), which makes the condition in Theorem 1 satisfied. Empirically, we can assign a relatively large initial value to \(\delta \) which will induce a small \(\lambda_{\max}^* \) and then decrease \(\delta \) gradually until \(\lambda_{\max}^* < \lambda_{\max} \) is satisfied.

Efficient Ways for Computing The Matrices Used in The Cigar Rule

When the number of rows in \(\mathbf{C} \) is large, e.g. the CC problem with fully connected graph \(m = \frac{n(n-1)}{2} \), calculating the inverse of \(\mathbf{D} \in \mathbb{R}^{m \times m} \) directly is infeasible. However, from the definition of \(\mathbf{D} \), we have the following efficient way to compute \(\mathbf{D}^{-1} \):

\[
\mathbf{D}^{-1} = \left(\mathbf{C} \mathbf{C}^T + \delta \mathbf{I} \right)^{-1} = \frac{1}{\delta} \left(\mathbf{C} \mathbf{C}^T + \delta \mathbf{I} \right)^{-1} = \frac{1}{\delta} \left(\mathbf{I} + \frac{\mathbf{C} \mathbf{C}^T}{\sqrt{\delta}} \right)^{-1},
\]

where \(\mathbf{C} \mathbf{C}^T \in \mathbb{R}^{n \times n} \) and the matrix inverse can be completed efficiently. The square root matrices \(\Lambda \) and \(\Lambda^{-1} \) can be obtained by the eigen-decomposition technique from matrices \(\mathbf{D} \) or \(\mathbf{D}^{-1} \).

Additional Experimental Results

Fig. 5 shows the \(\ell_2 \) clusterpath generated from the TCC and CGCC models on the two synthetic datasets when \(n = 200 \). According to the results, we can see that all the models can correctly detect the cluster. Figs. 6 and 7, Tables 4 and 5 provide the additional experimental results on the synthetic data where \(n = 1000 \).

Table 4: Running Time (seconds). E+S denotes the total time cost of using the Eater rule and the solver.

<table>
<thead>
<tr>
<th>Data</th>
<th>Solver</th>
<th>Eater</th>
<th>E+S</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>halfmoon</td>
<td>1495.6</td>
<td>4.1</td>
<td>288.7</td>
<td>5.2</td>
</tr>
<tr>
<td>spiral</td>
<td>3563.5</td>
<td>4.3</td>
<td>804.1</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Table 5: Running Time (seconds). C+S means the total time cost of using the Cigar rule and the solver.

<table>
<thead>
<tr>
<th>Data</th>
<th>Model</th>
<th>Solver</th>
<th>Cigar</th>
<th>C+S</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halfmoon</td>
<td>CGCC-1</td>
<td>3867.8</td>
<td>149.7</td>
<td>722.7</td>
<td>5.4</td>
</tr>
<tr>
<td>(n=1000)</td>
<td>CGCC-2</td>
<td>4709.7</td>
<td>301.1</td>
<td>1028.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Spiral</td>
<td>CGCC-1</td>
<td>10314.8</td>
<td>164.3</td>
<td>2349.8</td>
<td>4.4</td>
</tr>
<tr>
<td>(n=1000)</td>
<td>CGCC-2</td>
<td>12735.2</td>
<td>338.4</td>
<td>3178.4</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Figure 5: ℓ_2 clusterpath generated by the GCC models on the synthetic datasets. (a)-(c): halfmoon data (n=200); (d)-(f) spiral data (n=200).

Figure 7: The performance of the Cigar rule on synthetic data (n=1000). The first and second rows denote the results on the halfmoon and spiral dataset respectively.